

Food production and bioenergy, land allocation, land use with less environmental impact

Professor Jørgen E. Olesen

European land use – agriculture cover large areas

The N balance concept (mass balance)

Surplus: $S = I - O = \Delta + L$

Efficiency: O/I

Losses: $L = S - \Delta$

Conventional wisdom: Losses are directly related to inputs

N losses vary and have different impacts

- > Ammonia (NH₃): eutrophication, source of N₂O, particulate matter
- > Nitrate (NO₃): Eutrophication, ground water pollution
- > Nitrous oxide (N₂O): greenhouse gas
- > Nitric oxide (NO): short-lived
- > Dinitrogen (N₂): inert

The rate of emissions are strongly soil and climate dependent So is the distribution of N surplus to different losses

Improved use of livestock manure and effect of reduced fertilisation rates in Denmark

N rate

MBY - Maximum, biological yield

EONR - Economic optimal N rate

SNR - Standard N rate

RSNR - Reduced standard N rate

Levels of fertilisation in winter wheat in Denmark

Mineral fertiliser only

Reduction (1991-2000 to 2003-2006): 16-19 kg N/ha

Manure and mineral fertiliser

Reduction (1991-2000 to 2003-2006): 22 kg N/ha mineral fertiliser 33 kg N/ha manure

Estimated yield loss: about 0.5 t/ha

Nitrogen fertilisation and quotas in Denmark

	07/08	08/09	09/10	10/11	11/12	12/13
Reduction of N norm (%)	15.0	14.5	15.5	16.1	16.7	13.8
N quota at national scale						
Economical optimal quota, ton N	426,619	442,188	450,937	458,487	451,633	444,805
Quota after reduction, ton N	362,923	378,623	381,962	384,162	376,600	383,904
Additional N leaching at economical optimal quota, ton N	63,696	63,565	68,975	74,325	75,033	60,901
Additional N leaching from fertilisation at economical optimal quota, tons N	19,109	19,070	20,693	22,298	22,510	18,270
Cultivated area, ha	2,468,900	2,556,290	2,650,830	2,701,452	2,675,647	2,636,102
Average per ha:						
Economical optimal norm, kg N/ha	173	173	170	170	169	169
Norm after reduction, kg N/ha	147	148	144	142	141	146
Additional leaching at optimal norm, kg N/ha	26	25	26	28	28	23
Additional N leaching from fertilisation to economical optimal norm, kg N/ha	8.5	8.0	8.1	8.3	8.1	6.5

Estimated cereal grain yield loss in Denmark from N norm reductions

	DJF/FOI*	VFL 2004*	AU/VFL	VFL 2012	AU 2013**
	2004		2010		
Short-term effect	0.10	0.10 / 0.10	0.21-0.31	0.45	0.25 - 0.35
Long-term effect	0.02	0.13 / 0.08	0.04	0.15	0.15
Other		0.18 / 0.10			
Yield loss, grain	0.12	0.41 / 0.28	0.25 - 0.35	0.60	0.40 - 0.50

^{*} Effect of 10% norm reduction. ** Preliminary estimate.

Recent estimates of annual income loss: 90 – 220 mill. €

Non-linear responses dominate

Many policy decisions have been based on 30% if applied N being leached

Improved crop growth increases yield and increases N use and reduces N losses

Nitrate leaching in organic arable crop production systems

Nitrogen leaching in organic farming Importance of autumn crop cover

Danish lakes

Danish lakes

EU Marine Strategy

- In Denmark N supply to marine areas are still too large. Loadings
 probably needs to be reduces by further 19.000 ton N/year
- However, this is not sufficient to reestablish the good ecological conditions in coastal marine environments
- Further measures are needed (establishing eelgrass, reestablishing good sea surface conditions, removal of nutrients etc.)

Flow pathways and N transformation processes determine how much N ends up in vulnerable ecosystems

Current thinking: Linear food chains

Consequences: Ressource depletion, emissions, pollution (low total efficiency)

Future: Circular food chains - recycling

Three bioenergy scenarios for DK in 2020

- > Business as usual
 - > No changes in crop choice or technologies
 - > Historical increasses in crop yield and feed efficiency
 - > Existing biomass resources (straw, manure, rapeseed oil etc)
 - > Additional biomass: 4 mill. ton biomass. Reduction in N leaching: 6,800 ton N

> Biomass optimised

- Cereal varieties with greater straw yield
- Increased efficiency in straw harvesting
- > Less rapeseed more perennial energy crops
- > Fertilisation and harvesting of grass in managed wetlands
- > Harvesting roadsides, weeds in streams, cover crops etc.
- Additional biomass: 10 mill. ton biomass. Reduction in N leaching: 9,200 ton N

> Environmentally optimised

- > No straw harvesting in regions with critically low soil organic carbon
- > Maximum area of cover crops and perennial energy crops
- > No cereals in areas susceptible to N leaching
- > No fertilisation of grass in managed wetlands
- > Increased afforestation
- > Additional biomass: 8 mill. ton biomass. Reduction in N leaching: 23,100 ton N

More intelligent and differentiated regulation

- > Spatial variation in N retention
 - Some land areas have less N leaching per input and/or higher retention after leaching from root zone than other land areas
- > Management is highly important
 - Crop and soil management outside of the growing season may be more important than fertiliser rates for leaching
- > Shifts to other production systems are needed
 - > Perennial cropping systems may deliver higher productivity and certainly have less N losses and more carbon storage
- >How to develop regulatory systems that allow farmers to apply N where and when it has little environmental impact?