

Presentation of MT Højgaard

- Concepts for livestock housing units
- Environment technologies

Greening agriculture, 24 April 2013

Agromek Award 2009 and 2012

★★★ EUR MT Højgaard SmartFarm® central control system ver.01

★★★ EUR MT Højgaard's Integrated Air Exchange System© for air purification

- Award winner 2009

★★★ EUR MT Højgaard Intellifarm concept slaughter pigs ver.01

- Award winner 2012

MT Højgaard wins an award for developing a unique technology for air purification and air change in open livestock housing units.

Building design and environment technology

Concept for milk production

- · Wide buildings, 75m
 - Hybrid ventilation
 - Collection of NH3 and odorous gas
 - Air purification
 - · Improved indoor climate

Concept for finisher pigs

- · Wide buildings, 60m
- · Hybrid ventilation
- Reduction in energy costs(60%)
- · Collection of NH3 and odorous gas
- Air purification
- · Improved indoor climate

Hybrid Ventilation and SmartFarm Control system for cattle and pig housing units

Hybrid ventilation

Pit ventilation

Collection of ammonia and odour gases directly at the source – with potential for reduction of climate gases.

Hybrid ventilation

- Controlled natural ventilation in a regulated combination with mechanical pit exhaust
 - · 70-90% natural ventilation
 - · 10-30% mechanical ventilation
- · Low energy consumption
 - · No/fewer ventilation fans
 - Adjustable piglet shelters
 - · Heat recovery to heat the floor
- Reduction of emissions, perfect indoor climate
 - · Less ammonia min. 75% reduction
 - · Less odour gas min. 50% reduction
 - Less dust improved welfare of animals and personnel

Hybrid ventilation Documentation

- CFD modulation Computational fluid dynamics
 - · Parameters simulated:
 - Ventilation rate, airflow, temperature and air quality
 - Approved method
- Cooperation with Aarhus University and
- The Danish National Advanced Technology Foundation. Ministry for Research and Innovation
 - Film
 - Billec

Wind speed: 5 m/s, Ammonia concentration distribution, ppm

Wind speed: 1 m/s, Ammonia concentration distribution, ppm No pit ventilation

MT Højgaard Integrated air change system©, NH3 emission in a ventilated housing unit

MT Højgaard integrated air change system©, Odour emission in a ventilated housing unit

A cattle housing unit with hybrid ventilation built in 2012

A year of intensive testing has shown results in accordance with the previous CFD simulations:

- Reduction in NH3 emission of up to 85%
- · High reduction in indoor odour emission
- Stable indoor climate with favourable temperature and air quality for animals and personnel
- Fully automatic operation of the hybrid ventilation system without the assistance of the farmer.

Thank you for your time! For further information, please visit www.mth.com/agri

Erling Friis Pedersen

Section manager, Agri Division

Mobile: +45 2558 6223

E-mail: efp@mth.dk

